The resolvent average on symmetric cones of JB-algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولCHEBYSHEV SUBALGEBRAS OF JB-ALGEBRAS
In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or A= H R .l, where H is a Hilbert space
متن کاملOn Continuous Fields of Jb-algebras
We introduce and study continuous fields of JB-algebras (which are real non-associate analogues of C*-algebras). In particular, we show that for the universal enveloping C*-algebra C∗ u (B) for the JB-algebra B defined by a continuous field of JB-algebras At, t ∈ T, on a locally compact space T there exists a decomposition of C∗ u (B) into a continuous field of C*-algebras C∗ u (At), t ∈ T, on ...
متن کاملLie Algebras of Derivations and Resolvent Algebras
This paper analyzes the action δ of a Lie algebra X by derivations on a C*–algebra A. This action satisfies an “almost inner” property which ensures affiliation of the generators of the derivations δ with A, and is expressed in terms of corresponding pseudo–resolvents. In particular, for an abelian Lie algebra X acting on a primitive C*–algebra A, it is shown that there is a central extension o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.01.022